S1 Modular gray and its acton on it.
Deft For any commutative ring R, the general linear goop own \mathbb{R}
$G L_{2}(R)$ is defined as

$$
64_{2}(R)==\left\{g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \begin{array}{c}
a, b, c, d \in R \\
a d+b c \in R^{*}
\end{array}\right\}
$$

Special linear group

$$
S L_{2}(R)=\left\{g \in \sigma L_{2}(R) \mid \operatorname{det} g=1\right\}
$$

We will be mostly concerned with the cases $\mathbb{R}_{R}=\mathbb{R}, \mathbb{Z}, \mathbb{Z} / n \mathbb{Z}$
We restöct ourselves first to $S L_{2}(R)=G$ G acts on $\hat{d}=I U\{\infty\}$ by Linger frechonal transfometons

$$
\begin{aligned}
& G \times \hat{\Delta} \rightarrow \hat{\sigma}
\end{aligned}
$$

To see that this is indeed a grop dechon

$$
\begin{array}{ll}
\text { put } f(y, z)==c z+d & g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
f(c z+d \neq 0 & (I e \\
f+-c \mid c)
\end{array}
$$

then

$$
\begin{aligned}
g(z)= & (a z+b)=(c z+d)\binom{g \cdot z}{1} \\
& =f(g+z)(g \circ z)
\end{aligned}
$$

For $h, g \in G$ calculohing $g h\left(\frac{z}{1}\right)$ in 2 diffent ways and using associahuly of the nomix muliplicuhon we get.
(T) $(g h)\left(\frac{z}{1}\right)=J(g h, z)((g h) \cdot z)$
(it)

$$
\begin{aligned}
g(h(z) & =g(j(h, z)(h \cdot z)) \\
& =j(h, z) g(h 0 z) \\
& =j(h, z) j(g, h \circ z)(g \circ(h \circ z))
\end{aligned}
$$

Sewnd nows of (T) and (ii) gives

$$
\frac{\mathcal{J}^{j}(g h, z)=j(g, h o z) j(h, z)}{\text { (avtomorphy condito }}
$$

cosyct conditiontion)
and now the 1st now glies

$$
g o(h o z)=(g h)^{0} z
$$

le this is indoed a groyp oction

A simple calculchon gives

$$
\Pi m(g z)=\operatorname{detg} \cdot \frac{\operatorname{In} z}{|G z+d|^{2}}
$$

Hence of detg>0, in pertaler for $g \in S C_{R}(\mathbb{R})$

$$
\begin{aligned}
& \text { goz } z H \text { utenew } z \in \mathbb{R} \\
& g e z \in \mathbb{R} u\{\infty\} \text { whenever } z \in \mathbb{R} u\{\infty] \\
& S C_{2}(112) \times H \quad H+1
\end{aligned}
$$

Now ve restnct ouselves to $S L_{2}(I R)$ and HU1RU\{ \quad \}
Nate thu action $\frac{15}{}$ not faithful (fatthful means: $g \cdot x=x \Rightarrow g=e$)
-I acts fovolly to make it fathfl) ore an use instecd $\left.P S L_{2}(\mathbb{R})=S C_{2}(\mathbb{R}) K \pm I\right)$ the ghoyp of trensparchions
$\frac{R t}{L}$ Noted for on $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G_{2}(\mathbb{C})$
The corresponding tuäbius funchon

$$
\frac{\Phi}{\Delta}=\mathbb{z} \rightarrow \pi=M z=(a z+b) / c z+d
$$

is a mesomorphic sunchon on \mathbb{Q} y $<=0$ then $\nexists m$ has no poles and if $c \neq 0$ then thees a simple pole at $z=-d / c$ IM con be extended to the Rieoman sphee $q u \in \infty\}=\hat{c}$ by lathing $M \infty= \begin{cases}\infty & \text { if } c=0 \\ \frac{a}{c} & \text { i } c \neq 0\end{cases}$
We hove the following propertied
(1) If $L, M \in G L_{2}(\Phi)$ then $\Phi_{\infty} 0 \Phi_{M}=\Phi_{\mathrm{Lm}}$ In pohcilor $\Phi_{M}=\hat{I} \rightarrow \hat{\sigma}^{L} \underset{\sim}{I}$ a bjechoo, and $\Phi_{M}^{-1}=\frac{\Phi_{M}}{M^{-1}}$
(2) $\Phi_{M}=T d \Leftrightarrow M=\lambda I$ for some $0 \neq \lambda \in \mathbb{C}$
(3) If $M=\left(\begin{array}{ll}x & x \\ c & d\end{array}\right) \quad G c_{2}(\mathbb{C}), z, w \in \mathbb{C}\{-d / c\}$ for $c \neq 0$, then $M z-M w=\operatorname{det} M z-\infty$
(4) If $M=\left(t \frac{x}{d}\right)$ end, $z \in \mathbb{C}[-d / c\} \quad(c z+d)(c u+d)$ then

$$
\frac{d}{d z} M z=\frac{\operatorname{det} M}{(c z+d)^{2}}
$$

(5) I $M \in \sigma L_{2}(1 R)$ then $\operatorname{Im}(m z)=\frac{\left.\operatorname{det} M \frac{\operatorname{Im} z}{\mid c z+d}\right]^{2}}{\text { let } w=z}$
(6) In maps circles in in (3) circled
(7) f il $t \in$ ब open and $A u+U==\{f=4 \rightarrow U$, f biholon $\}$ the Autonnonphisn gp of u.
Then (1) fut $\hat{c}=\operatorname{PSc}_{2}(\mathbb{C})$
(2) A+ $A=2 z \leftrightarrows a z+b \mid a b c 屯$ $a \neq 0\}$
(3) $A+H=\operatorname{Ps} L_{2}(\mathbb{R})$.

Classifcehon of LIs
We con classify linear T I in $P S C_{2}(\mathbb{R})$ acuording to its fixed points.
Fach Itg $\in S L_{2}(\mathbb{R})$ has at most 2
fled points in I and of least one fred point

$$
\frac{a z+b}{c z+d}=z \quad \Rightarrow \quad c z^{2}+(d+a) z=b=0
$$

Then 1 let $\pm I \neq M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S C_{2}(12)$.
Then M hos either one or 2 fixed points in $\mathbb{R} \cup\{\infty\}$ or two complex confrigate (no n-real) fixed points.
there precisely we hove one of the following
i) M is pacbolic $\Leftrightarrow M$ hos
excotily one Axed point

$$
\begin{aligned}
& p \in \mathbb{R} \cup\{\infty\} \\
& \Leftrightarrow+M=+2
\end{aligned}
$$

$$
z \rightarrow z+\lambda
$$

translohon
2) M is ellipto $\Leftrightarrow M$ has exactly 2 complex condugate (non-real) fixed points

$$
\Leftrightarrow|t r m|<2
$$

$$
z \Rightarrow k(\theta) z
$$

rotchion
$\Leftrightarrow M \pi$ unjugcte in $s C_{2}(\mathbb{R})$ to $\left.\left.\begin{array}{r} \pm(\cos \theta \\ (-\sin \theta\end{array}\right) \sin \theta+\begin{array}{c}\cos \theta\end{array}\right)=k(\theta)$
3) M is hyperbolic $\Leftrightarrow M$ hos 2 distinet fxed points in Rusp

$$
\Leftrightarrow(t-m)>2
$$

$\Leftrightarrow M$ is confucote in $S L_{2}(\mathbb{R})$ to $\pm\left(\begin{array}{ll}\lambda & \\ x^{-1}\end{array}\right)$

$$
x \in \mathbb{R}, \quad|x| \neq 1
$$

$\binom{$ Profy See Palkalimho to complex frehn theury }{ Thm $\sqrt{x} 28}$

Next we look at different
reallzahonts of the upper toff plane. of $\beta=S C_{2}(1 R)$ on 14 is transitive te Thee is only 4 orbit - In fact The supgrop $\left.B=\left\{\binom{x}{0} \operatorname{s}\right) \operatorname{sic}(\mathbb{R})\right\}$ already acts praninuely
To see this for given $z x+y \in H$

$$
\begin{gathered}
\text { let } B=y^{1 / 2} \quad x y^{1 / 2} \\
y^{1 / 2} \\
B \cdot i=\frac{y^{1 / 2} i^{1}+x y^{-1 z}}{y^{-1 / z}}=\frac{\pi a n}{1 y+x}
\end{gathered}
$$

Hence every $z \in I t$ is in the obit of et The stabilizer of $i=G \pm\left\{\begin{array}{c}g=(a b) \in G \mid g-i-z \\ c d\end{array}\right)$

$$
\left.\begin{array}{rl}
& \left.\left.\left(\begin{array}{ll}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right) \\
\left(\frac{a v+b}{c+t d}=1 \Rightarrow O_{2}(\mathbb{R})\right. \\
\left(a^{1}+b-d i-c \Rightarrow a-d\right. \\
& d+t-a^{2}+b^{2}=1 \quad b=-c
\end{array}\right)
$$

Recoll from Algebra if G is a group aching on abet X thansipuey and $x \in X$, then X con be idenfled w/ G / G_{x}

In pattculer $\mathrm{SC}_{2}(\mathbb{I R}) / \mathrm{SO}_{2}(\mathbb{R}) \quad 1 H$

$$
g \mathrm{SO}_{2}(\mathbb{R}) \longrightarrow g{ }^{2}
$$

gies the idonhficohbo of it uith

$$
\mathrm{SC}_{2}(\mathbb{R}) / \mathrm{SO}_{2}(\mathbb{R}) \mathrm{Note}\left(\mathrm{SO}_{2}(\mathbb{R})\right. \text { is a compe: }
$$

$$
-\left(90 \times \$ c_{2}(12)\right.
$$

RL. Th's woy of vieuing H leads nchrolly to gonerdizohons.

$$
\begin{align*}
&(1) G=s(2, \sigma) \\
& k=s u(2, ष)=\left\{\left(\frac{a}{b} \frac{b}{a}\right) \in s \subset(c)\right\} \\
& G / k \approx\{p=z+r g
\end{align*}
$$

$$
\begin{aligned}
& (2) G \operatorname{Sp}(n, \mathbb{R})=\left\{\left.M=\left(\begin{array}{cc}
A & \beta \\
c & B
\end{array}\right)=6 L(2 n, \mathbb{R}) \right\rvert\,\right. \\
& \left.{ }^{t} M J M=J=\left(\frac{1}{I}-I\right)\right\} \\
& \left.K=\left(\begin{array}{cc}
A & B \\
-B^{t} & A
\end{array}\right) \quad A+B i \quad \text { unitang } \cup(n, C)\right)
\end{aligned}
$$

$H_{n}=$ siegel uppe-half plore

$$
\begin{aligned}
= & \left\{z=x+|y| z^{t}-z, y>0\right\} \\
\approx & \operatorname{sp}(n, \mathbb{R}) / K \\
& (s p(1,1 R)=s c(2,12)
\end{aligned}
$$

(3)

$$
\begin{aligned}
& G=\sigma C(n, \mathbb{R}), K=\operatorname{so}(n, \mathbb{R}) \\
& G / K=\left\{(\begin{array} { l l }
{ 1 } & { * } \\
{ 0 } & { * }
\end{array}) \left(y_{2}+y_{n}\right.\right. \\
& \left.y_{y_{2} y_{3}}^{y_{1}}\right)^{\left\lvert\, \begin{array}{l}
x \in 1 \\
y_{1}>x \\
x
\end{array}\right.}
\end{aligned}
$$

$G=N A K \quad A$ max'l ebelion,$N=\left\{\left(\begin{array}{ll}1 & * \\ \left(a_{1}-a_{n}\right)\end{array}\right)^{+1}\right.$ Netpot

Recull ay goup G acts on $6 / k$ fon a slge flit by trastahon

$$
\begin{aligned}
& G \times 6 / k \rightarrow 6 / k \\
& (g, h k) \rightarrow g h k
\end{aligned}
$$

Fosy to gee thot

$$
\begin{aligned}
& S_{2}(1 R) / K\left(\frac{g}{\square} \rightarrow S_{2}(R) / k\right. \\
& h K \longrightarrow \operatorname{gh} K \\
& H \operatorname{HO}^{H} \\
& \begin{array}{c}
\text { hoi } \\
\pi+ \\
H
\end{array} \underset{H}{H}
\end{aligned}
$$

Hence tre achens of $s c_{2}(12)$ on $S c_{2}(12) / K$ and on It are equiverant
RL
$H=S C_{2}(\mathbb{R}) / K$ is a so colled Domojerieaus space
The le ge $6=5 c_{2}(\mathbb{R})$ ats on $x=11$ tensituely 日代 Is hongeneas in he cense thet under tre ockon of σ II lodess tocally he sare
(A smooth manfold M endaved with a trensive smooth achōn by a Lie gpopp it called a Homog- spece).

